I e TR S PR

AD-A208 724

TR

Systems

Optimization
I__aboratory

Note on Degeneracy

by
Alamuru S. Krishna

TECHNICAL REPORT SOL 89-4
April 1989

DTIC,.

%, JUNOG 1989 B2

g

Department of Operations Research
Stanford University
Stanford, CA 94305

T DISTAIBOTION STATEMINT &

Approved for public reiease; 8 9 6 O 5 1 6 4 ~

[ Dustribution Unlimited

S ———




SYSTEMS OPTIMIZATION LABORATORY
DEPARTMENT OF OPERATIONS RESEARCH
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305-4022

Note on Degeneracy

by
Alamuru S. Krishna
TECHNICAL REPORT SOL 89-4
Aprii 1989

DTIC

ELECTE
JUNO6 1389

H

Research and reproduction of this report were partially supported by the National Science Founda-
tion grants ECS-8617905 and DMS-8800589; U.S. Department of Energy grant DE-FGO03-87TER250238
and Office of Naval Research grant N00014-89-3-1659. Any opinions, findings, and couclusions or
recommendations expressed in this publication are those of the author and do NOT necessarily
reflect the views of the above sponsors.

Reproduction in whole or in part is permitted for any purposes of the United States Government.
This document has been approved for public release and sale; its distribution is unlimited.




Note on degeneracy
By A.S.Krishna, Stanford University
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) Abstract

" Given a linear program in standard form, Min cx s.t. Az =b, z 4}_ 0, where:& is
an M X N matrix with rational coefficients, one te¢hnique ysed to resolve degeneracy
in the simplex algorithm is the lexicographic rule, This rule adjoins to b a non-singular
m X m square matrix M. The appended columns of M are Ypdated along with b on
each iteration. When the ratio test for determining the pivot tow results in a tie, the
ratio test is applied to lk{ne corresponding elements of the updated columns of M in turn,
from left to right, until the tie is resolved. In this note we prove that it is only necessary
instead, to adjoin to b a single column d whose ith component is l; = #*, (or preferably

the fractional part of 47 in order that Idl < 1). Any transcendental number, Jike - Q.
__—e=-2:13 7. .;the base of the natural-legirthmy-can be used instead of # = 3.14. ~

The proof exploxts the fundamental property of a transcendental number namely, 1t,

can never be a root of a polynomial equation o4 + &ftf-{- + ap.tp = 0 when

m, Qsg,. W rational and not all zero. ™
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Review of standard € — perturbation method or lexicographic rule :
In e-perturbation method we perturb the RHS to (b; +€,by + €%,...,b,, + €™).
At any iteraton the right hand side is (b + By(€),...,bm + Pm(€)) where P; is
the polynomial 51", Bixe* where B stands for the inverse of the basic matrix

in the curent iteration. Given the variable entering basis, it can be proven that
J e > 0such that V0 < e < ¢, the variable that leaves the basis is uniquely de-
termined. Moreover this lexicographic rule for choosing the entering basic variable
solves the original problem in finitely many iterations. Tl.e key point in the proof is
based on the observation that at any iteration the polynomials Y|, Bixe* fori=
1,...,m are independent, in the sense that no non-zero linear combination of them
is identically equal to zero. This implies that for any choice of 0 < € < ¢, no two
rows can be tied.

However perturbing in this way requires updating the full matrix M ™! = [3,;]
and possibly making many comparisons since, in the worst case, we might have to
compare elements of m additional columns. However, when all entries in the initial
tableau are rational, we propose a different perturbation scheme which requires the
updating and comparisons in case of ties in exactly one additional column. Moreover
this column does not depend on the values of A ur b and is the same for all problems
with m rows.
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Towards that end let us suppose that all entries of the initial tableau are ra-
tional. We perturb the RHS to (b, + dye¢,...,by + dn€) where d,,...,d,, will be
specified later. At any subsequent iteration t, let the updated RHS be b; +d, ¢, b, +
dse, ..., by + dme. The values of §; and d; can be found by standard pivot up-
dating or derived from the original tableau by the formula b = 3 i Bikbx and
d; = Y i Bikdi for ¢ = 1,...,m where, as usual, 8 stands for the inverse of the
current basis matrix.

We want to choose the coefficients d = (dy, ..., d;;) so that for any subsequent
iteration t, either b; > 0 or b; = 0 and d; > 0. To find such a d, we note that if
A consists of all rational entries, then all subsequent basis inverse elements 3;; are
guaranteed to be rational. Hence it is enough to choose d;,...,dm s.t. Y, axdx #0
whenever all a are rational except if ax = 0 for all £ . This is easily accomplished
by choosing dx = d* where d is any transcendental number, say, 7 = 3.14156...
for example. In that case the requisite property is satisfied by any transcendental
number, indeed this is the definition of a transcendental number.

To summarize, the following perturbation scheme involves less updating and
smaller possible number of comparisions than the conventional lexicographic scheme
and guarantees, in the case of a rational problem, finite termination.

Apply the simplex method with the following choice of the variable leaving the
basis. First append to the RHS the column d = (w,n2,... ,1r"')T or alternatively
d = (di,...,dy) where d; is the fractional part of 7*. For some subsequent iteration
let A,b,T,d denote the elements of the current tableau where d is the updated
column d which is appended. Then the steps are:

STEP 1: s = argmin(T;)

STEP2: Ifc, > fl), terminate.
(current basic feasible solution is optimal)
STEP 3:  Denote by R = {i|a;, > 0}.
If R is empty, terminate.
obj(current basic solution +) homogeneous solution)— —oo
as A — 400
STEP 41  Denote by R = {k € R|by/ax, < b;/T;, ¥ i € R}
r = acgmin (di/ak,)
ke€ER
STEP 5:  Update tableau by pivoting on G,.
STEP 6: GO TO STEP 1.




The above proof is valid if the coefficients are rational and the computations
are carried in exact arithmetic. As for the case of irrational coefficients the following
observation can be made: Given any table, there are only finitely many tables which
can be generated from it by pivoting. So altogether there are only countably many
tables that might show up at some point. So perturbing the RHS to (b, +de,...,bn+
d™¢), we get countably many polynomials in d that might show up as coefficients
of € in RHS. So surely 3 dy which is not a root of any of these polynomials. Hence
choosing such a d = dy can never result in a tie for the choice of pivot row since,
having a tie at some iteration implies having 0 in the next iteration, which we have
just ruled out.

For the case of irrational coefficients all this is not of much practical significance,
since there appears to be no practical way of finding such an dy. Moreover we need
not worry too much about this case in practice since all practical problems are
rational, i.e., only rationals can be represented on a computer. This same criticism
applies in the rational case as well since, from a practical point of view, neither can
a transcendental like 7 or e be represented on computer.

Theoretically we have finite termination with, say, #. Therefore we have finitely
many polynomails in d as coefficients of € for which 7 was not a root. Hence no
number in a small neighbourhood of # can be root for those polynomials either.
So representing 7 sufficiently accurately does the trick, though once again from a
practical point of view we can not determine a priori how much accuracy is sufficient
and whether requiring that much accuracy is worthwhile or not.

Another point of practical concern is computing the powers of . If m is large it
is, of course, not advisable to compute and store #™ in a computer. Instead we can
still have rational independence of polynomials as explained above if we choose our
dy,da,...,dy, as follows. Define dy = 1, then d; = nd;_; — [rdi_;1] fori=1,...,m
where [7d;_;] denotes the greatest integer less than or equal to nd;_;. In a computer
7 is replaced by 7, the first p significant digits of m; moreover d; is replaced by d;,
the first q significant digits of d;. It is therefore possible, due to rounding, that
d; = disx for some i and & > 0. If this is ilie case the sequence of d; will cyclically
repeat. To test this possibility we generated {d;} for i = 1,...,5000, where 7 was
replaced by i, the first 16 digits of # and all the arithmetic was carried to 16 decimal

places. No repetition was found in the sequence.
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Note on degeneracy
By A.S.Krishna, Stanford University

Abstract

Given a lilear prograin in standard form, Min ¢z s.t. Az = b, £ > 0, where A is
an m X n matrix with rational coefficients, one technique used to resolve degeneracy
in the simplex algorithm is the lexicographic rule. This rule adjoins to b a non-singular
m X m square matrix M. The appended columns of M are updated along with b on
each iteration. When the ratio test for determining the pivot row results in a tie, the
ratio test is applied to the corresponding elements of the updated columns of M in turn,
from left to right, until the tie is resolved. In this note we prove that it is only necessary
instead, to adjoin to b a single column d whose ith component is d; = 7*, (or .referably

the fractional part of 7! in order that Id,'l < 1). Any transcendental number, like
e = 2.73..., the base of the natural logirthm, can be used instead of 7 = 3.14... .
The proof exploits the fundamental property of a transcendental number namely, it
can never be a root of a polynomial equation a1 + 012.’1:2 + -+ oz,,x” = 0 when
O, G2, ..., Qp are rational and not all zero.
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